Tech Offers

A Compact UHF RFID Tag for Metallic Objects

This technology offer is a Ultrahigh Frequency (UHF) Radio-Frequency Identification (RFID) tag antenna for use on metal structures. 2 versions are available: A compact dual-band version with folded strip structure, with a total size of only 20 mm × 30 mm × 1.5 mm. This tag can be well used in different RFID systems, which work at different UHF bands, such as European and American frequencies. The reading patterns of this tag are with different directions in two bands. A single band version with a total size of only 10 mm × 30 mm × 1.5 mm. This tag can be well used in planar as well as conformal platforms, such as metallic cylinders and bearings.Automated factories should be interested in these tags, and they can use the miniaturized tags with RFID technology to intelligently detect whether the machinery and equipment are running normally.

Read More
Multifunctional 3D Printed Porous Carbon Materials Derived From Paper

This technology offer is technique that can turn renewable cellulose paper feedstock into lightweight carbon foams that are architected into highly complex geometries that cannot be produced through traditional manufacturing techniques, such as closed-cell lattices. These carbon foam lattices exhibited excellent mechanical properties, particularly in energy absorption, as well as good battery characteristics, low thermal conductivity and relatively good electrical conductivity. Unlike most traditional carbon foams that are brittle, paper-based carbon foams can withstand ~ 30% strain before significant deformation sets in. These multifunctional properties, the quick and easy customization of part geometry and the use of green feedstock are expected to be useful for aerospace, automobile, sports, medical and thermal insulation markets, as they search for the next generation of eco-friendly, high-performance materials.This technology is available for R&D collaboration, IP licensing, or test bedding, with partners such as battery manufacturers, supplier to battery manufacturer, space industry, etc.

Read More
Efficient LoRa WAN protocol for mission critical IoT applications

An improvised LoRaWAN has been developed to enhance data transmission efficiency between LoRa trackers and LoRaWAN gateways addressing the prevalent issue of mid-air data loss due to collisions. This improved protocol enhances the data transmission rate from its current range of 10-30% to 65%. This substantial improvement leads to power savings for IoT end nodes, particularly those powered by batteries, by eliminating the need for data re-transmission. Moreover, the improved protocol also significantly increases gateway capacity, thereby reducing the capital expenditure associated with IT infrastructure.

Read More
Safe and Rechargeable Water-Based Battery

To achieve a net-zero carbon emission goal, energy derived from fossil fuels are replaced with green renewables such as solar, wind, etc. However, these renewable energies are intermittent in nature and therefore requires a reliable energy storage system to store these energies. Today, batteries based on lithium-ion and lead-acid are widely used as the go-to energy storage system. However, there are fire safety concerns for the conventional lithium-ion batteries due to its highly volatile and flammable electrolyte while the acidic electrolyte and carcinogenic lead used in lead-acid posed threat to both human and environmental health. Therefore, there is a need for a new safe and environmentally friendly battery system.This technology offer is a safe and rechargeable water-based battery using a unique green electrolyte formulation (close to neutral pH). Owing to the widened electrochemical stability window and high ionic conductivity of the proposed electrolyte formulation, it enables superior electrochemical performance of the electrode materials used in the batteries, suited towards large-scale energy storage applications.

Read More
Economical and Sustainable Binder for Efficient Stabilisation of Marine Soft Clay

Offshore land reclamation has been an important strategy for Singapore to meet its land needs. However, the ultra-soft soil in the surrounding waters makes land reclamation extremely difficult. Besides, many infrastructure projects (i.e., tunnelling, deep excavation, etc.) are also challenging when encountering soft marine clay due to its poor engineering properties, such as high water content, high compressibility, and low shear strength.Currently, ordinary Portland cement (OPC) is the most common binder used for soft clay stabilisation through deep mixing or jet grouting. However, OPC is not very effective for the stabilisation of marine soft clay with high water content. In addition, the production of OPC leads to negative environmental impacts such as non-renewable resources, high energy consumption, and high carbon emissions.The technology owner has developed a sustainable novel binder, entirely from industrial by-products, that has high stabilisation efficiency for marine soft clay. Using the same binder content, the 28-day strength of the novel binder-stabilised soft clay can be 2–3 times higher than that of the OPC-stabilised clay. In addition, the novel binder has a lower cost and less environmental impact, making it an economical and sustainable alternative to OPC.This technology is available for R&D collaboration, IP licensing, and test-bedding with industrial partners in the construction and infrastructure sectors.

Read More
Universal Robotic Gripping: Variable-Stiffness Gripper Enabled by Jamming Transition

Recent advances in soft robotics revolutionize the way robots interact with the environment, empowering robots to undertake complex tasks using soft and compliant grippers. Compared to traditional rigid structures. Soft grippers have excellent adaptability for a variety of objects and tasks. However, the existing gripper systems faces some challenges, such as handling delicate, wet, and slippery items, the risk of damaging valuable items, and high production cost.Based on pneumatic jamming of 3D-printed fabrics, the technology owner has developed a variable-stiffness soft pneumatic gripper that can apply small forces for pinching and pick-up heavy objects via stiffening. The invented grippers are soft and adaptive to handle delicate items with various shapes and weights, minimising the damaging risk of items during the gripping process. In addition, such gripper with adjustable stiffness could handle heavy and bulky items by increasing its gripping strength. These benefits make the gripper more versatile and adaptable to various applications in agriculture, food processing, packaging, manufacturing, and human-robot interaction (HRI).The technology owner is seeking to do R&D collaboration, IP licensing, and test-bedding with industrial partners intending to integrate variable-stiffness gripper in their applications. 

Read More